Multiplicity of Solutions for Resonant Neumann Problems with an Indefinite and Unbounded Potential
نویسنده
چکیده
We examine semilinear Neumann problems driven by the Laplacian plus an unbounded and indefinite potential. The reaction is a Carathéodory function which exhibits linear growth near ±∞. We allow for resonance to occur with respect to a nonprincipal nonnegative eigenvalue, and we prove several multiplicity results. Our approach uses critical point theory, Morse theory and the reduction method (the Lyapunov-Schmidt method).
منابع مشابه
Semilinear Neumann problems with indefinite and unbounded potential and crossing nonlinearity
We consider a semilinear Neumann problem with an indefinite and unbounded potential and an asymmetric reaction that crosses at least the principal eigenvalue of the operator −Δ + βI in H1(Ω), β being the potential function. Using a combination of variational methods, with truncation and perturbation techniques and Morse theory, we prove multiplicity theorems providing precise sign information f...
متن کاملMultiple Solutions for Parametric Neumann Problems with Indefinite and Unbounded Potential
We consider a parametric Neumann problem with an indefinite and unbounded potential. Using a combination of critical point theory with truncation techniques and with Morse theory, we produce four nontrivial smooth weak solutions: one positive, one negative and two nodal (sign changing). AMS Subject Classifications: 35J20, 35J60, 58E05.
متن کاملNeumann Problems with Indefinite and Unbounded Potential and Concave Terms
We consider a semilinear parametric Neumann problem driven by the negative Laplacian plus an indefinite and unbounded potential. The reaction is asymptotically linear and exhibits a negative concave term near the origin. Using variational methods together with truncation and perturbation techniques and critical groups, we show that for all small values of the parameter the problem has at least ...
متن کاملMultiplicity of Solutions for Gradient Systems
We establish the existence of nontrivial solutions for an elliptic system which is resonant both at the origin and at infinity. The resonance is given by an eigenvalue problem with indefinite weight, and the nonlinear term is permitted to be unbounded. Also, we consider the case where the resonance at infinity and at the origin can occur with different weights. Our main tool is the computation ...
متن کاملUNBOUNDEDNESS IN MOILP AND ITS EFFICIENT SOLUTIONS
In this paper we investigate Multi-Objective Integer Linear Programming (MOILP) problems with unbounded feasible region and introduce recession direction for MOILP problems. Then we present necessary and sufficient conditions to have unbounded feasible region and infinite optimal values for objective functions of MOILP problems. Finally we present some examples with unbounded feasible region and fi...
متن کامل